翻訳と辞書 |
Partial k-tree : ウィキペディア英語版 | Partial k-tree In graph theory, a partial ''k''-tree is a type of graph, defined either as a subgraph of a ''k''-tree or as a graph with treewidth at most ''k''. Many NP-hard combinatorial problems on graphs are solvable in polynomial time when restricted to the partial ''k''-trees, for bounded values of ''k''. ==Graph minors==
For any fixed constant ''k'', the partial ''k''-trees are closed under the operation of graph minors, and therefore, by the Robertson–Seymour theorem, this family can be characterized in terms of a finite set of forbidden minors. The partial 1-trees are exactly the forests, and their single forbidden minor is a triangle. For the partial 2-trees the single forbidden minor is the complete graph on four vertices. However, the number of forbidden minors increases for larger values of ''k''. For partial 3-trees there are four forbidden minors: the complete graph on five vertices, the octahedral graph with six vertices, the eight-vertex Wagner graph, and the pentagonal prism with ten vertices.〔.〕
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Partial k-tree」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|